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their impaired function, we evaluated PAR4-mediated [Ca”]i flux.
PAR4-mediated [Ca®"]; flux in VAMP-7 '~ platelets was not statis-
tically different from that in wild-type controls at any of the concen-
trations tested, indicating normal proximal signaling in the VAMP-7 "~
platelets (Figure 6A). PAR4-dependent activation of serine/threonine
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Figure 5. Spreading on collagen is impaired in
VAMP-77'~ platelets. (A) Fluorescence microscopy of
wild-type and VAMP-7 '~ platelets spread for the indi-
cated amounts of time on collagen and stained with
Alexa 546 Phalloidin. Scale bars represent 5 pm. (B)
Quantification of surface area (left) and perimeter of
spread platelets (right) from wild-type (d ) and VAMP-7 "/~
mice (s ) spread on collagen (**P < .01). Error bars
represent the standard deviation of measurements
from 79 to 384 platelets per time point. (C) Statistical
analysis of platelet spreading was performed by
quantification of the number of platelets at various
stages of spreading as described by Pleines et al.*®
According to this method, a value of 1 (black) indicates
rounded platelets that lack pseudopodia or lamellipo-
dia; 2 (gray) indicates platelets with pseudopodia only;
3 (dark gray) indicates platelets with pseudopodia and
lamellipodia; and 4 (light gray) indicates fully spread
platelets with lamellipodia only. This analysis was per-
formed at the indicated time points after seeding on
collagen. V7 Null, VAMP-T”; wt, wild-type.

and tyrosine phosphorylation was also similar in VAMP-7 '~ and
control platelets (Figure 6B). In wild-type and VAMP-7 /" platelets,
a3 was expressed at similar levels (Figure 6C; supplemental
Figure 7A; P = .97). Activation of ay,[33, as detected by the Jon/A
antibody after stimulation with 150 uM SFLLRN, was also similar
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Figure 6. Proximal signaling mechanisms are not
impaired in VAMP-7~'~ platelets. (A) [Ca®"]; flux in
wild-type and VAMP-7~'~ mice incubated with fura-2
was monitored after incubation with the indicated
concentrations of AYPGKF. (B) Immunoblot analysis
using an anti-phosphoserine/phosphothreonine anti-
body (PS/PT; left) or an anti-phosphotyrosine antibody
(PY) of lysates (right) from wild-type and VAMP-7~'~
(V77'7) platelets before (Resting) and after (Activated)
stimulation with 150 .M AYPGKEF. (C) Wild-type (top)
and VAMP-7~'" platelets (bottom) were stained with
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in wild-type and VAMP-7 '~ platelets (Figure 6D; supplemental
Figure 7B; P = .3). These observations suggest that loss of VAMP-7
does not result in an upstream signaling defect.

Association of VAMP-7 with platelet VARP and Arp2/3

The observation that spreading is defective in VAMP-7 '~ platelets
(Figure 5) suggests arole for VAMP-7 in cytoskeletal dynamics as well
as in membrane fusion. VAMP-7 is unique among VAMP isoforms in
that it contains an N-terminal longin domain capable of interacting with
adaptor proteins and cytoskeletal components. To identify VAMP-7
binding partners in platelets, immunoprecipitation of VAMP-7 was
performed, and the immunoprecipitates were evaluated by mass spec-
troscopy. Evaluation of VAMP-7 binding proteins demonstrated an
interaction with VARP (an adaptor protein that has not previously been
described in platelets) and with Arp2/3 (an actin-binding protein
previously shown to function in platelet actin reorganization).>'*3 2
Immunoprecipitation of VAMP-7 followed by immunoblot analysis
using anti-VARP and anti-Arp2/3 antibodies confirmed an association
of VARP and Arp2/3 with VAMP-7 (Figure 7A). The association of
VARP and Arp2/3 with VAMP-7 decreased after stimulation of plate-
lets by SFLLRN. Immunoprecipitation of VARP followed by mass
spectroscopy indicated an association of VARP with VAMP-7 and
Arp2/3. Immunoprecipitation of VARP followed by immunoblot anal-
ysis confirmed this association and demonstrated decreased association
of VAMP-7 and Arp2/3 with VARP after platelet activation, consistent
with results obtained with immunoprecipitation of VAMP-7 (Figure 7A).
These studies suggest an activation-sensitive association of VAMP-7,
VARP, and Arp2/3.

The association of VAMP-7 with VARP and Arp2/3 could provide
a mechanism whereby membrane fusion is coupled to actin reorgani-
zation to provide auxiliary membrane to cover growing actin structures.
The coupling of membrane fusion to actin reorganization would be

VAMP-7--
JON!A

expected to occur in the periphery of the spreading platelet, where
pseudopodia and lamellipodia formation occurs. To assess the local-
ization of VAMP-7, VARP, and Arp2/3 in adherent platelets, platelets
were spread on poly-L-lysine and subsequently stained with phalloidin
to facilitate the distinction between the central granulomere and the
platelet periphery, as previously described.** VAMP-7 and Arp2/3
demonstrated localization primarily to the platelet periphery
(Figure 7B-C). The localization of VARP was divided approxi-
mately evenly between granulomere and periphery. In contrast,
VAMP-8 localized primarily to the platelet granulomere (Figure 7B-C),
as has been demonstrated previously for the majority of granule
proteins.*® Immunofluorescence staining of spread platelets demon-
strated that VAMP-7 and VARP colocalized in spread platelets
(supplemental Figure 8). Similarly, VAMP-7 partially colocalized
with Arp2/3 in the spread platelet, as did VARP and Arp2/3 (sup-
plemental Figure 8). The activation-sensitive association of VAMP-7,
VARP, and Arp2/3 in the periphery of the spreading platelet could
provide a mechanism that links membrane fusion to actin poly-
merization (Figure 7D).

Discussion

These studies demonstrate a role for VAMP-7 in platelet granule exocy-
tosis and spreading. VAMP-7 shares significant amino acid sequence
similarity to VAMP-8 in the SNARE domain and is more closely related
to VAMP-8 than to VAMP-2 or VAMP-3. Both VAMP-7 and VAMP-8
function in late membrane fusion events, including the trafficking of
granules from endosomes to the cell surface.”> VAMP-7 and VAMP-8,
but not VAMP-2 or VAMP-3, function in the exocytosis of mast cell
granules, which (like platelet granules) are released by compound exocy-
tosis.>* Unlike VAMP-8, however, VAMP-7 contains an N-terminal
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Figure 7. VARP associates with VAMP-7 and Arp2/3 in an activation-dependent manner. (A) VAMP-7 and VARP were immunoprecipitated (IP) from human platelets
before or after exposure to 5 uM SFLLRN. Immunoprecipitated proteins were separated by sodium dodecyl sulfate—polyacrylamide gel electrophoresis and evaluated for
VARP, Arp2/3, and VAMP-7 by immunoblot analysis. (B) Double immunofluorescence microscopy of actin and either VAMP-7, VARP, Arp2/3, or VAMP-8 was performed, and
images were analyzed as previously described* to demarcate the granulomere and periphery of spread platelets. The percentage of VAMP-7, VARP, Arp2/3, and VAMP-8
fluorescence in the granulomere and periphery was quantified. Measurements represent the standard deviation of 25 individual platelet measurements per condition. (C)
Representative images of double immunofluorescence microscopy of actin and VAMP-7, VARP, Arp2/3, or VAMP-8. Scale bars represent 5 microns. (D) Model of putative
role for VARP in linking platelet granule exocytosis and actin polymerization. In the resting state (top left), VARP binds VAMP-7 and Arp2/3, localizing the granule exocytosis
machinery and the actin polymerization machinery to the same location and maintaining them in an inactive state. Following platelet activation (bottom left), VAMP-7 and Arp2/
3 are released from VARP. VAMP-7 interacts with target (t)-SNAREs on the plasma membrane and Arp2/3 functions in actin reorganization. Fusion of granules with the
plasma membrane provides extra membrane to cover growing actin structures during spreading (right).

extension that enables VAMP-7 to associate with several binding part-
ners with which VAMP-8 does not interact.”®*° This longin domain
influences both the regulation and function of VAMP-7,> allowing it to
act at the nexus of cytoskeletal remodeling and membrane fusion.

Loss of VAMP-7 results in only a partial defect in granule release,
consistent with previous observations that VAMP-8 serves a major role
in platelet granule exocytosis.>* Defects in exocytosis are not secondary
to impaired granule formation, as indicated by normal platelet mor-
phology in VAMP-7 nulls. Normal cargo content is indicated by the

observation that full secretion is observed in response to high agonist
concentrations (Figures 2 and 3) and with immunoblot analysis of o
granule contents (Figure 3). The fact that agonist-induced [Ca™]; flux
and serine/threonine and tyrosine protein phosphorylation are similar in
VAMP-7""" and control platelets suggests that proximal signaling
events are not affected by the loss of VAMP-7 (Figure 6). The pheno-
type of impaired granule release and aggregation in the absence of de-
fects in proximal signaling events has also been observed in VAMP-8 7/~
and Munc13-4~'" platelets.'>>* Impairment of PF4 release after
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arteriolar injury in VAMP-7 '~ mice despite that fact that
platelet accumulation is normal provides further evidence that
VAMP-7 is required for normal o granule exocytosis and shows
that its loss results in a partial defect in granule release in vivo. The
fact that platelet accumulation is not impaired during thrombus
formation distinguishes the phenotype in VAMP-7 '~ mice from that
of VAMP-8 7/~ mice, as well as from Nbeal2 ™/~ mice, which are
deficient in o granules and demonstrate a defect in thrombus
formation.>® Tn addition, VAMP-7"'" mice do not demonstrate
prolonged bleeding with tail clip (supplemental Figure 3). The
observation that aggregation is not impaired in response to 150 uM
PARA4 agonist (Figure 2), whereas a granule release is nearly absent
under these conditions (Figure 3), is consistent with the in vivo
observation that PF4 release is impaired despite normal platelet
accumulation (Figure 4). Recent studies using Nbeal2-null mice
indicate that o granules serve functions beyond hemostasis and
thrombosis, such as contributing to tumor metastases.” Whether in-
terference with VAMP-7 could interfere with such activities without
affecting hemostasis remains to be determined.

With its N-terminal longin domain, VAMP-7 is a candidate
v-SNARE for linking cytoskeletal elements to the SNARE machinery
and thus orchestrating membrane fusion events required for platelet
spreading. We have previously shown that the subpopulation of
o granules that translocates to the platelet periphery during platelet
spreading expresses VAMP-7.*’ We now demonstrate that spreading
is decreased in VAMP-7~"" platelets. Our hypothesis is that VAMP-7+
granules translocate to the periphery of the spreading platelet and fuse
with the plasma membrane to provide membrane for directed exocy-
tosis during spreading. VAMP-7 functions in directed granule exocy-
tosis in several cell types that use granules as a source of auxiliary
membrane. In macrophages, VAMP-7 functions in delivering granules
to the phagocytotic cup.**>* In neurons, VAMP-7 mediates membrane
fusion required for tubulovesicular structures at the leading edge of
elongating dendrites and axons that support neurite outgrowth.>*-
We now demonstrate arole for VAMP-7 in delivering membrane to
the platelet periphery during spreading.

Although platelet granule exocytosis has largely been studied in
suspension platelets, physiologic granule release during thrombosis and
inflammation occurs in adherent platelets, where cytoskeletal remodel-
ing occurs concurrently with exocytosis. Real-time imaging of platelets
adhering to matrices under flow conditions demonstrates that individ-
ual platelets form elongated membrane tethers that can extend up to
250 pum.>*® Platelet membrane projections have also been identified
in vivo during thrombus formation.”® Although the open canalicular
system undoubtedly provides some of the reserve membrane required
for the formation of these tethers, directed granule exocytosis of
a granules, particularly of VAMP-7 " granules, could provide a rapid
means of directed membrane delivery to a growing tether.

The molecular mechanisms that enable dynamic coordination of
cytoskeletal and membrane remodeling in platelets are poorly under-
stood. Our studies demonstrate that VAMP-7 serves an important link
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between exocytosis and actin reorganization. We now show that
VAMP-7 associates with VARP and Arp2/3 in platelets. VARP is
a multidomain adaptor protein previously shown to bind VAMP-7
and maintain it in an inactive conformation.’® VARP is required for
stimulus-induced dendrite formation in melanocytes® and neurite
outgrowth in neurons, where it recruits the molecular motor Kif5,
tethering factor GolginA4, and plakin MACF-1.%" Arp2/3 is re-
quired for actin polymerization during platelet spreading and
promotes orthogonal branching of actin filaments.>*> A pathway
involving Racl-dependent signaling through Arp2/3 and coordinat-
ing the activity of VAMP-7 has been described for neurite out-
growth.®® Evaluation of neurite outgrowth has also demonstrated that
under different conditions, Cdc42 can control exocytosis of VAMP-
7—containing vesicles to cover growing actin structures.>”> The role
of the VAMP-7:VARP:Arp2/3 complex in linking exocytosis with
actin reorganization in platelets and its control by upstream signaling
pathways require additional characterization. VARP could localize
this F-actin—generating machinery with granule exocytosis through
VAMP-7 (Figure 7D). Further studies will be required to assess this
hypothesis and detail the role of Arp2/3 and VARP in linking platelet
cytoskeletal remodeling to granule exocytosis.
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