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Osamu Shimomura

@ Osamu Shimomura was the first

A person to isolate GFP and to find
*1 out which part of GFP was
& responsible for its fluorescence.

1962
Identification of GFP,
extracted from 10,000 jellyfish

O Shimomura, FH Johnson, ¥ Saiga:Extraction, purification and properties of

2equorin, a bioluminescent protein from the luminous hydromedusan,
Aequorea. J. Cell. Comp. Physiol. 58 (1862) 223-29

1974
Intermolecular energy transfer between
aequorin and GFP in jellyfish

JG Morin, JW Hastings: E Transfer in a biolumi t . J. Cell = i
Physiol, 77 (1971) 34318, R light Green light
H Morise, O Shimomura, FH Johnson, J Winant: Intermolecular Energy 0

Transfer in Bioluminescent systems of aequorea. Biochemisiry 13 (1874)

2656-62.

1979

Shimomura characterized structure of

chromophore.

O Shimomura: Structure of the chromophore of Aequorea green flucrescent
protein. FEBS Letters 104 (1979) 220-22.

Adapted after [1iip.//www.conncoll edu/ceacad/zimmer/ GEP-ww/instCO himl, Marc Zimmer, University of Connecticut.
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Aequorin GFP

From hitp:/fwww.conncoll.edu/ccacad/zimmer/GFP-ww/GFP-1.hitm, Marc ZImmer, University of Connecticut
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Crystal structure of the Aequorea victoria green fluorescent protein.
Ormd M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ.
Science. 1996 Sep 6;273(5280):1392-5.
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The Green Fluorescent Protein

glycine

tyrosine

Autofiuorescent Proteins, METHODS IN CELL BIOLOGY, VOL. 85

The core amino acids: Ser65, Tyr66, and Gly67.
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The structure of Aequorea GFP

MSKGEELFTGVVPILVE
L VNGQKFSVSGEGE
GDATYGKLTLKFICTTG
KLPVPWPTLVTTFSYGV
QCFSRYPDHMKQHDFFK
SAMPEGYVQERTIFYKD
DGNYKTRAEVEKFEGDTL
VNRIELKGIDFKEDGNI
LGHEMEYNYNSHNVYIM
ADKPEKNGIKVNFKIRHN
IKDGSVQLADHYQONTP
IGDGPVLLPDNHYLSTQ
SALSKDPNEKRDHMILL
EFVTAAGITHGMDELYK

From Robert E. Campbell, University of Alberta
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Douglas Prasher

Prasher find the gene for GFP in
Aequorea victoria and was able to
express it in bacteria. In 1992 he
published a paper in Gene; it
reported the cloning of GFP and
the sequence of the 238 amino
acids

1992
Cloning of the GFP gene in bacteria

D Prasher, RO McCann, MJ Cormier: Cloning and Expression of the Cdna

Coding for Aequorin, a Bioluminescent Calcium-Binding Protein.
Biochemical and Biophysical Research Communications 126 (1985) 1259-

68.

DC Prasher, VK Eckenrode, WW Ward, FG Pendergast, MJ Cormier:
Primary structure of the Aequorea victorea green fluorescent protein. Gene
111 (1992) 229-33.

CW Cody, DC Prasher, WM Westler, FG Pendergast, WW Ward: Chemical
Struciure of the hexapeptide chromophore of the Aequorea Green
fluorescent protein. Biochemistry 32 (1993) 1212-18.

GFP Amino Acid Sequence:
MSKGEELFTGVVPVLVELDGDVNGQKFSVSGEGEGDATYGKLTLNFICT
TGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTI
FYKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKMEYNYNS
HNVYIMGDKPKNGIKVNFKIRHNIKDGSVQLADHYQQNTPIGDGPVLLP
DNHYLSTQSALSKDPNEKRDHMILLEFVTAARITHGMDELYK
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Martin Chalfie

Chalfie received a GFP
clone from Prasher. He
expressed it in bacteria
and c. elegans.

%

1994

Expression of the GFP in C. elegans
M Chalfie, ¥ Tu, G Euskirchen, WW Ward, DC
Prasher: Green fluorescent protein as a marker
for gene expression. Science 263 (1994) 802-05.
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Adapted after [11n://www conncoll du/ceacad Zimmer/ GEP-ww/instCD himl, Mare Zimmer, University of Collnecticut.



The use of GFP as tracer o R
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, Marc Zimmer, University of Connecticut.
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TRENDS in Biotechnology Vol.23 No.12 December 2005

Studying promoters Protein labeling

Target Fluorescent Fluorescent Target
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— - — —




Fluorescent proteins - Lydia Danglot
Fluorescent bicistronic vectors

pIRES2 Vector — ) I b

Fomvie Gene IRES  Fluorescence poly A

Gene
Ribosome F
= = N, ClONtech
mRNA | — AAAAAA
Gene IRES Fluorescence
mRNA
I !
Proteins Protein of Interest  Fluorescent Protein

Figure 1. Schematic diagram of bicistronic mRNA translation. The internal ribosome entry
site (IRES) permits a protein of interest and a fluorescent protein to be independently

translated from the same mRNA.

Thus, nearly 100% of fluorescently labeled cells will express your gene of interest,
so you can quickly identify cells expressing your gene of interest by simply
screening for fluorescence by flow cytometry or fluorescence microscopy. This
reduces clone variability so selected cells can be used directly in experiments.

www.clontech.com/colors
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Roger Tsien

His group has developed mutants that start fluorescing
faster than wild type GFP, that are brighter and have

different colors (see below, the E stands for enhanced
versions of GFP, m are monomeric proteins and tdTomato

is a head-to-tail dimer).

R Heim, DC Prasher, RY Tsien: Wavelength mutations and posttranslational autoxidation of green
fluorescent protein. Proc. Natl. Acad. Sci. USA 91 (1994) 12501-04.

R Heim, A Cubitt, RY Tsien: Improved green fluorescene. Nature 373 (1995) 663-64

M Ormo, AB Cubitt, K Kallio, LA Gross, RY Tsien, SJ Remington: Crystal structure of the
Aequorea victoria green fluorescent protein. Science 273 (1996) 1392-95.
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The Nobel Prize in Chemistry 2008

"for the discovery and development of the green fluorescent
protein, GFP"
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Photo: ). Henrlksson/SCANPIX Photo: ). Henriksson/SCANPLX Phaoto: UCSD
Osamu Shimomura Martin Chalfie Roger Y. Tsien
® 1/3 of the prize ® 1/3 of the prize ® 1/3 of the prize
USA USA USA
Marine Biclogical Celumbia University University of California
Laboratory (MBL) New York, NY, USA San Diego, CA, USA;
Woods Hole, MA, USA; Howard Hughes Medical
Boston University Medical Institute
School

Massachusetts, MA, USA



The GFP mutants: BFP, CFP and YFP “ReiasoRnt ot e et

Advances in fluorescent

protein technology

Nathan C. Shaner, George H. Patterson
and Michael W. Davidson

Journal of Cell Science (2007) 120, 4247-4260

a1} p-10
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Fluorescent protein spectra
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Sergey A. Lukyanov

His group has found some GFP-like proteins in corals and
in the sea anemone Anemonia.

In August 2007 Lukyanov reported a bright, fast folding
fluorescent protein that emits light in the far-red. The protein
is named Katushka, a dimutive form of Ekaterina after
Ekatrina Merzlyak one of the researchers working with
Lukyanov. The monomeric form of the protein is called
mKate. It was isolated from a brilliant red sea anemone
bought in a Moscow petshop by Lukyanov.

DM Chudakov, VV Belousov, AG Zaraisky, VV Novoselov, DB Staroverov, DB Zorov, S Lukyanov, KA Lukyanov:
Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotechnology 21 (2003) 191-84.

D Shcherbo, EM Merzlyak, TV Chepumykh, AF Fradkov, GV Ermakova, EA Solovieva, KA Lukyanov, EA Bogdanova, AG
Zaraisky, S Lukyanov, DM Chudakov:
Bright far-red fluorescent protein for whole-body imaging. Nature Methods 4 (2007) 741-46.

AS Mishin, FV Subach, IV Yampolsky, W King, KA Lukyanov, VV Verkhusha:

The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore.
Biochemistry 47 (2008) 4666-73.

Adapted after [1iip./www. conncoll adu/ceacad/zimmer/ GEP-ww/instCO himl, Marc Zimmer, University of Connecticut.
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L

- he
Fluorescent
Proteins Too!

From Robert E. Campbell, University of Alberta



Fluorescent proteins - Lydia Danglot

A —
— —
Diversity and Evolution of Coral Fluorescent Proteins e .
Maila O. Alieval, Karen A. Konzen2, Steven F. Field1, Ella A. Meleshkevitch2,
Marguerite E. Hunt1, Victor = Corn o
Beltran-Ramirez3, David J. Miller3, Jo" rg Wiedenmannd, 5, Anya SalihG, Mikhail V. . ;ﬁ_«!
Matz1 - Furth E
PLoS ONE 3(7): e2680. i 8
———— & | Coralimarpharial
sl FrrFil
lapa ™™
'E"I wﬂﬂ:" [ ]
e —
c I IPW .
'::z |_I Il.Illla:l-\uuﬂl e— ﬂ[iﬁlﬁfll
Anthozoa e
_— ]
+ tmmme
E ca P ":.:Tnh_:-
ﬁ e Jzoanthicoa
) , — pumcre 3
— =,
= coral BEE" arnaCFe - cymn
E L il GFP = gisa)
= Ly -yl
.E A" | nllgd"" :‘im _:: ﬁ:::-‘:ﬂ
u F-lﬂlﬂlﬂ-. _E : w N dmmp-u-:-.:n
H e
rmal -
—F—=57 e |Aleyonaria
D‘ r i:':\-i." [ ]
e Gorallimerpharia2
g+
Pennatulacea =
— ey T
Ceriantharia Wiy 55 =
Hydrozoa g
'—LUT;::W
P—
Arthropoda Hialr,
h._;!_Er_.rru

L B
— Frmahl M
o g T




Fluorescent proteins - Lydia Danglot

Reef Coral Fluorescent Proteins (RCFP) C Clontech

Excitation Emission
Maximum Maximum

Protein Color (nm) (nm)
AmCyan1 blue 458 489
ZsGreen green 493 505
ZsYellow1 yellow 529 539
DsRed-Monomer red bb6 bB6
DsRed2 red 563 682
DsRed-Express red 557 579
AsRed2 red 576 592
HcRed1 far red hB88 618

Like DsRed, , ZsGreen, and AsRed are derived
from Anthozoa reef coral.

DsRed-Monomer, DsRed2, and DsRed- Express derive from
Discoma sp. reef coral.

HcRed1 is derived from the Anthozoa-class sea anemone

Heteractis crispa reef coral.

nitp://www.reefcreation.co.uk www. clontech.com/colors
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A Red fluorescent proteins trans-chromophore

e _ 1*‘_
o 00T ™

ZsYellow o
Lys66 _/ d-lmnld.

(1)

cis-chromophore

FE6E = Mai, Gin, Thr, Cye or Glu

Advances in fluorescent

protein technology

Nathan C. Shaner, George H. Patterson
and Michael W. Davidson
Journal of Cell Science (2007) 120, 4247-4260
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Fig. 2 Sequence alignment of 4equorea victoria green fluorescent protein (GFP) with Discosoma sp. DsRed and its extensively mutated derivative mRFP1.

Autofluorescent Proteins, METHODS IN CELL BIOLOGY, VOL. 85
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Advances in fluorescent protein technology

Nathan C. Shaner, George H. Patterson and Michael W. Davidson
Journal of Cell Science (2007) 120, 4247-4260

Table 1. Physical properties of useful fluorescent proteins

EYFP® Yellow 514 57 51 o 0.9 Weak dimer GY0 FITFYFP Mivawaki et al., 1999
mVenus Yellow 515 £28 53 15 6.0 Monomer GYG FITC/YFP Magai et al, 2002
mitrnne Yellow 516 529 59 49 57 Monomeer GYG FITCYFP Griesbeck et al., 2001
YPet Yellow 517 530 A 40 5.6 Weak dimer GYG FITC/YFP Neuyen amnd Daugherty, 20035
mKQ Omnge 548 559 31 122 50 Monomer CYG TRITC/DsRed Karasawa et al.. 2004
td Tomato Omnge 554 581 s 9k 4.7 T-dimer MYG - TRITC/DsRed Shaner et al., 2004
TagRFP Ormange 333 S84 4R g <40 Monomer MYG TRITC/DsRed | : el-al,, 2007

Physical properties for the recommended FPs in each spectml class. *Common literature FP abbreviation. "Product of the molar extinction coefficient and the quantum vield (mM *em)” . *Literature
values except as noted. Photobleaching represents the time to bleach from an emussion rate of 1000 photons per second to 500 photons per second ( ty;) m a wadetficld fluorescence microscope.
*Recommended common filter sets and custom FP sets availsble from afiermarket manufaciurers, For specialized applications, we suggesi choosing filier combmations that closely match the spectral
profiles (sce Shaner et al., 2005). Y™casured in live cells with mEGFP (17~ 150 seconds) as 2 control. *Measured and normalized per standard photobleaching proiocel (sce Shaner et al, 2005), 7 Averges
of literature values. Pincluded for reference.
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C Clontech

Reef Coral Fluorescent Proteins (RCFP)

Heiatlv;

Excitation  Emission Extinction

Maximum Maximum  Quantum  Coefficient
Protein Color (nm) (nm) Yield® (M-'em™)®  Brightness®
AmCyani blue 458 489 0.76 39,000 29,250 Tetramer
Z2sGreen green 493 505 0.91 43,000 39.130 Tetramer
ZsYellow1 yellow 529 539 0.65 20,000 13,000 Tetramer
DsRed-Monomer red 556 686 0.20 16,100 3,220 Monomer
DsRed2 red 563 682 0.5b 43,800 24,090 Tetramer
DsRed-Express red 557 579 0.90 19,000 17100 Tetramer
AsRed2 red 676 592 0.21 61,000 12,810 Tetramer
HcRed1 far red 588 618 0.03 20,000 600 Dimer

Like DsRed, , £5Green, and AsRed are derived from Anthozoa reef coral.

DsRed-Monomer, DsRed2, and DsRed- Express derive from Discoma sp. reef coral.

HcRed1 is derived from the Anthozoa-class sea anemone Heteractis crispa reef coral.

* DsRed2 :variant of DsRed : six point mutations: improve solubility by reducing its tendency to form aggregates, and
decrease the time from transfection to detection.

* DsRed-Express is a rapidly maturing variant of DsRed (enhanced solubility, reduced green emission, accelerated
maturation Forms the same tetrameric structure as wild-type DsRed, it displays a reduced tendency to aggregate.

* DsRed-Monomer : |s is a monomer. It contains 45 mutations in comparison to wt DsRed.

* HcRed1 is a far-red fluorescent protein derived from a nonfluorescent chromoprotein found in the Anthozoa-class sea
anemone Heteractis crispa. The far-red fluorescent variant (HcRed1) was generated using random and site-directed

ta is (11, 12).
aitagenesie. (11.45) www.clontech.com/colors
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Table I: Spectral Properties of Clontech Fluorescent Proteins

Excitation Emission Relative Extinction
Maximum Maximum Quantum Coefficient

Protein Color (nm) (nm) Yield® (M-'em™)®*  Brightness®
AcGFP1 green 475 606 0.82 32,500 26,650
AcGFP1 Fluorescent Protein B Clontech

AcGFP1 was derived from the jellyfish Acequorea coerulescens and is a novel
alternative to enhanced Aequorea victoria GFP.

94% homology to EGFP at the amino acid level.

The chromophore matures rapidly and is readily detected 8-12 hours after transfection.
Because it is a true monomeric protein, AcGFP1 is an ideal candidate for fusion tag
applications and is a benefit for dual labeling with DsRed-Monomer.

www.clontech.com/colors
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Recommended FP for Different applications

Available
Vector
Application Recommended Proteins Comments Format(s)'
Fusion Tags AcGFP1 Monomeric fluorescent proteins are often ideal for fusions A
DsRed-Monomer as they tend 1o be least disruptive to the function of the protein
mCherry of interest. In many cases, oligomers can also be effective.
Reporters of Promoter DsRed2 Bright fluorescent proteins make excellent reporters. We provide B
Activity ZsGreen promoterless reporter constructs containing bright fluorescent
ZsYellowl proteins for promoter activation studies.
Cell Labeling DsRed-Express Bright proteins that can be multiplexed (i.e., have very different [
and Imaging Z2sGreen excitation and emission maxima) are ideal for cell labeling
mCherry and imaging. We offer the widest spectral range —so you can
mOrange choose based on your color, filter, or multiplexing needs.
AmCyani
Detection of AcGFP1 and DsRed-Monomer Good (high efficiency) FRET pairs require a donor with A D
Protein-Protein AcGFP1 and mCherry a high quantum yield {t]ul and an acceptor with a high
Interactions (FRET) mOrange and mStrawberry  Forster radius (R;). As required for any live-cell application,
mOrange and mCherry our red-shifted FRET pairs have reduced autofluorescence.
Measuring ZsProSensor Our Proteasome Sensor Vector is ideal in image-based assays for E
Proteasome Activity compounds with proteasome-inhibiting or activating properties.
Subcellular Labeling AcGFP1 Qur Subcallular Localization Vectors allow you to target c
DsRed-Monomer fluorescant proteins to the following structures:
a‘l_ggw golgi complexes endoplasmic reticuli
1 actin filaments mitochondria
plasma membranes peroxisomes
nuclei endosomes
microtubules
In Vivo (Plant/Animal) mPlum Far red proteins are preferred for in vivo imaging because A BD
Imaging HcRed1 they avoid the natural green autofluorescence produced
mCherry by plant and animal cells; however, bright green proteins
have also been used successfully.
Visualization of DsRed-Express IRES (bicistronic) vectors permit your protein of interest F
Gene Expression ZsGreen1 and a fluorescent protein to be independently trans|ated
from a single RNA transcript. Good for monitoring
F transfection efficiency or gene expression.

- Clontech www.clontech.com/colors



Recommended FP for double labeling

First Color Second Color Third Color
ZsYellow1 HcRed1
DsRed2
il DsRed-Express
AsRed?
HcRed ZsYellow1
DsRed2
ZsGreen] DsRed-Express
i AsRed2
HcRed1
ZsYellow1 AmCyan1 HcRed!
HcRed1 AmCyan]
DsRed2 AmCyan1
DsRed-Express
AsRed2 IsGreenl
AmCyanl ZsYellow1
HcRed! IsYellow AmCyan
IsGreenl

Fluorescent proteins - Lydia Danglot
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Living Colors® Fluorescent Proteins

Broadest spectrum available —9 proteins, 5 brilliant colors =
F
- Clontech

Table I: Living Colors Novel Flu

| MR

| f . i i :'|
et doiaint d LRSI

Mote: HoRed1 immrmmﬁﬂhdﬂdmmzlm,lﬂw are derived from Anthozros resf rive from Ofscoma sp. reef coral. AcGFP1 derives
from Aeguores coerule scens jelbyfish.
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C Clontech

AmCyan1, ZsGreen1, ZsYellow1, DsRed1, AsRed2, and HcRed1. www.clontech.com/colors
Table |: Spectral Properties of Clontech Fluorescent Proteins

Excitation  Emission Relative Extinction
Maximum Maximum  Quantum  Coefficient
Protein Color (nm) (nm) Yield® (M-'cm™)®  Brightness®
mPlum far red 590 649 0.10 41,000 4,100
mRaspberry far red 508 625 0.15f 86,0001 12,900
HcRed1 far red H88 618 0.03 20,000 600
mCherry red 587 610 0.228 72,0000 15,840
mStrawberry red b74 b6 0.29¢ 90,0000 26,100
AsRed2 red 576 692 0.21 61,000 12810
DsRed-Monomer red b6 86 0.20 16,100 3,220
DsRed2 red 663 6582 0.66 43,800 24,090
DsRed-Express red 657 579 0.90 19,000 17100
mQOrange orange 548 563 0.69¢ 71,0000 48,990
mBanana yellow 540 5563 0.70¢ 6,000¢ 4,200
ZsYellow1 yellow 529 639 0.65 20,000 13,000
Z2sGreent green 493 05 0.91 43,000 39,130
AcGFP1 green 475 6505 0.82 32,500 26,650
AmCyan1 blue 458 4389 0.75 39,000 29,250
EYFP= yellow 512 529 0.54 45,000 24,300
EGFP* green 484 510 0.70 23,000 16,100
ECFP® blue 439 476 0.15 20,000 3,000
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Photoactivatable
& photoconvertible
fluorescent proteins
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Advances in fluorescent protein technology

Nathan C. Shaner, George H. Patterson and Michael W. Davidson
Journal of Cell Science (2007) 120, 4247-4260

Table 2. Physical properties of useful optical highlighter fluorescent proteins

Table of PI‘{;&:JI properties for the monomeric and tandem dimer optical highlighters. *Common literature FP abbreviation. "Product of the molar extination coefficient and the quantum yield
(mMxcm) . *Literature values except as noted. "Recommended common filter sets and custom FP sets available from aftermarket manufacturers. For specialized applications, we suggest choosing filter
combinations that closely match the spectral profiles (see Shaner et al., 2005). Wative conlormation. **Photoactivated or photoconverted conformation.
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Advances in fluorescent protein technology

Nathan C. Shaner, George H. Patterson and Michael W. Davidson
Journal of Cell Science (2007} 120, 4247-4260



Green-to-red photoconversion : Kaede, KikGR, Dendra2 and Eos

Fluorescent proteins - Lydia Danglot
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Lukyanov et al., Nat Rev Mol Cell Biol (2005), Vol 6: 885.
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Table 1 | Comparison of the spectroscopic properties of selected photoactivatable fluorescent proteins (PFAPS)

PAFP PA-GFP PS-CFP PS-CFP2 PAMRFP1-1 Kaede mEosFP KikGR KFP1* Dronpa
properties

Ohgomenc Monomer*  Maonomer? Monomer® Monomer? Tetramer® Monomer*  Tetramer® Tetramer®*  Monomer?
state

Activating light  WN—violet® U\V—violst® UV—viclet® UV—violet® LV=violets LV—violet® UV-violets Greent UV —viclet®
Cluenching MNSA INAA N/A MNAA N A MNAA NSA Blue, Blue,

light max at meax at

~450 nm ~490 nm
Change of 400 to 402 o400 400 to 480 Increass at 508to 572 BH05tob560 50710583 Increaseal Increase al

absorbance 504 b78 580 503
spectrum (nim)
Change of Increase 46810 511 470 to 511 Increase at b18to 580 bH16tobB1 bH17tob83 Increaseat Increase at
emission atb17 605 600 518
spectrum (nm)
Reversibility of  Irreversible  Irreversible Irreversible Irreversible Ireversible  Irreversible  Ireversible  Reversible  Reversible?
photoactivation and

irreversiblet
Increase in 100 3007 >400% 70 800% ND ND 70or35 ND
flucrescence

intensity (fold)

Lukyanov et al., Nat Rev Mol Cell Biol (2005), Vol 6: 885.
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Table 1. Commercially available fluorescent proteins
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(www .stratagene.com)

Company Fluorescent proteins available
Blue, Cyan Green Yellow Red Photoactivatable

Amaxa pmaxFP-Green" pmaxFP-Yellow" pmaxFP-Red”
(www.amaxa.com)
BD Biosciences Clontech AmCyan1 AcGFP1 ZsYellow DsRed2
(www.clontech.com) ZsGreen DsRed-Express

DsRed-Monomer

Timer

AsRed2

HcRed1
Evrogen PS-CFP2 TurboGFP phiYFP JRed KFP-Red
(www.evrogen.com) PS-CFP2
Invitrogen BFP EmGFP YFP
(www .invitrogen.com) CFP
Lux Biotechnology RmGFP
iwww luxbiotech.com) PtGFP

RriGFP
MBL International Midoriishi-Cyan Azami Green Kusabira-Orange Dronpa Green
{www.mblintl.com) Kaede
KikGR
ManoLight Technology RmGFP
(www.nanolight.com) PtGFP
RrGFP

Fromega Monster Green
(www.promega.com)
Stratagene hrG FP

“pmaxFP-Green, pmaxFP-Yellow, and pmaxFP-Red are other names of TurboGFP, phiYFP, and JRed proteins, respectivaly.
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Imaging fluorescent proteins
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Confocal image stack

"l

2d projection
of 4 images

e

E-
m 3d projections i

of the compete stack

2d projections of different views

Fig. 59: Confocal images of pollen. The upper rows show the first 12 images of a series of 114, that
can be used to create either two-dimensional projections of parts of the pollen or create a 3D view of

the surface structure. This three-dimensional projection shown here is accompanied by two-dimen-

sional projections as if the pollen was being viewed from different perspectives. Images were created ,
using the Olympus Fluoview 1000. http://www.olympusfluowiew.com
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Microscope confocal « spinning disc »
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Microscope confocal « spinning disc »
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Microscope confocal « spinning disc »
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Fig. 2. Nipkow disk confocal laser scanning mucroscope with microle
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FRAP: Fluorescence Recovery
After Photobleaching
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Methods of gene delivery
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Transfection

Transfection: introducing DNA or siRNA into cells by non-viral methods.
Lipid-Mediated Transfection in Mammalian Cells

F&:ﬁﬂ}“ ‘ Endocytosis
DNA

Different ways of transfection:
» Delivery of DNA by carriers molecules

Calcium phosphate Q

Lipofection Lipofection Cell

» Delivery of DNA by electroporation e e
» Delivery of DNA by biolistic methods
» Delivery of DNA by magnetofection R TR

Infection: introducing DNA into cells by viral methods.
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Transfection

Transient transfection : Since the DNA introduced in the transfection process is usually not inserted
into the nuclear genome, the foreign DNA is lost at the later stage when the cells undergo mitosis.
Within a few days most of the foreign DNA is degraded by nucleases or diluted by cell division

Piggrﬁid Asel p CM‘I."t
. romaoter
Stable transfection: Rpplication [ ﬂfg"rgﬂfi';lg"
. . uence
To achieve stable expression, the transgene must S " s
' inati \ EYFP
spontaneously mt_egl_*ate by recombination of the _ | Herpes Simplex N pEYFP-ER Gene
transfected plasmid into the host genome and replicate in ey e 4,800 Base Pairs | < Sequence
synchrony with the cell. Cells containing integrated DNA KDEL ER
are rare and must be amplified by selection for drug Figure 7 Bgl |l
resistance or identified as a result of phenotypic alteration. SV40 Poly A
iﬁanamy:ilﬂ e Affl
- eomycin
Resi —
Resistance gene | resistance| N, W“ 1
n
Copy Number = 500 Re Ilfll:.gaiﬂnn -

——» co-transfection with a selection gene which
gives the cell some selection advantage antibiotic
resistance).

Only those few cells with the foreign genes inserted into
their genome will be able to proliferate, while other cells
will die. After applying this selection pressure for some
time, only the cells with a stable transfection remain and
can be cultivated further.

A common agent for stable transfection is Geneticin, also
known as G418, which is a toxin that can be neutralized

by the product of the neomycin resistant gene.
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Calcium phosphate transfection Calcium phosphate cristals
1 ug DNA
W ar e HBS buffer
o 5k T
kit CalPhos (clontech #631312) InLiquid. AAPS PharmSciTech. 2006: 7(4): Article 89.

Add DNA solution
dropwise to the HBS

Incubate cells for 45 min

' Dissolve
/o =, precipitatesina
10% CO2 incubator

(Acid pH)

' 0
REtL":ﬂ cells in 5 A"' Figure 3 | High transfection efficiency achieved with our improved protocol
CO2 incubator in low-density hippocampal cultures, (al-c1) Phase-contrast micrographs.
(a2—2) Fluorescent images of GFP-transfected cells in three independent
transfections. Note that the majority of neurons in the local field
(microislands) are transfected. Neurons were in culture for 10-15 d. Scale bar,

NATURE PROTOCOLS | VOL.1 NO.2 | 2006 | 695 50 um. Reproduced from reference 11.




Fluorescent proteins - Lydia Danglot

Lipofection » Lipofectamine (invitrogen) é invitrogen-

« Effecten (QIAGEN), sasse

* Fugene (Roche), ... —

The basic structure of cationic lipids consists of a positively charged head group and
one or two hydrocarbon chains. The charged head group governs the interaction
between the lipid and the phosphate backbone of the nucleic acid, and facilitates
DNA condensation. Often cationic lipids are formulated with a neutral co-lipid or helper
lipid, followed by extrusion or microfluidization, which results in a unilamellar liposomal
structure with a positive surface charge when formulated in water.

Dilute Combine diluted
Lipn::ieclamine“ Lipofectamine”™ 2000 Add complexes to
i ; Dilute DNA 2. 2000 Reagent 3. Reagent and DNA 4, cells in growth medium
DNA-Cationiclipid —
complex formation _ . O o o
I. -. D
V0O
| O O
' £ | O
Mix, incubate 20 min Incubate 24 h to 48 h

The main advantages of lipofection are its high efficiency, its ability to transfect all types of nucleic acids in a
wide range of cell types, its ease of use, reproducibility and low toxicity. In addition this method is suitable for all
transfection applications (transient, stable, co-transfection, reverse, sequential or multiple transfections...), high
throughput screening assay and has also shown good efficiency in some in vivo models.

Lipofectamine or Lipofectamine 2000 is a common transfection reagent, produced and sold by Invitrogen, used
in molecular and cellular biology. It is used to introduce, that is transfect, siRNA or plasmid DNA into in vitro cell
cultures by lipofection. Lipofectamine treatment alters the cellular plasma membrane, allowing nucleic acids to
cross into the cytoplasm. It was invented by Dr. Yongliang Chu at Life Technologies, Inc.
http://www.invitrogen.com
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Viral infection Packaging vectors
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The karyophilic properties of HIV mean that the viral DNA can H |V 7 -
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Magnetofection

Magnetofection: uses magnetic fields to concentrate particles containing nucleic acid and cationic magnetic
nanoparticle into the target cells. Magnetofection was invented by Christian Plank and Christian Bergmann

and is reqgistered as a trademark.
Nanoparticles: iron oxide, which is fully biodegradable, coated with specific cationic proprietary molecules.

AN

1 DNA, shRNA, © | NeuroMagReagent
SIRNA, ODN... (3.5pL per pg of DNA)
(0.25t0 20 ug)

DNA+ NeuroMag complexes

2) incubate 15 to 20 minutes

Incubation 15 minutes on the
Magnetic Piate

3)

4) Assay (24h/ 72 )
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The gene gun or the Biolistic Particle Delivery System

elemental particle of a heavy metal coated with plasmid DNA. This technigue is often simply referred to as biolistics
Other heavy metals such as gold and silver are also used. Gold may be favored because it has better uniformity than
tungsten and tungsten can be toxic to cells, but its use may be limited due to availability and cost..

The DNA to be delivered is attached to tiny gold balls (1 micrometer in diameter). These balls are put onto a disk that is
in the inside of the Gene Gun. A blast of helium at 1000 psi sends the disk shooting forward at approximately 1300 feet
per second, roughly the same speed as a bullet leaving a rifle. A screen stops the disk and the tiny gold or tungsten
balls are launched towards the target cells. The balls breech the cell membrane and release the DNA particles. The
Gene Gun utilizes recombinant DNA technology to incorporate the expression of the delivered genes. The genetically
altered cells can be used to make plants that include the desired genetic modification in all of their cells (Voiland et al,
1999). This gun uses Biolistic ® particle bombardment where DNA- or RNA-coated gold particles are loaded into the
gun and you pull the trigger. A low pressure helium pulse delivers the coated gold particles into virtually any target cell
or tissue. The particles carry the DNA so that you do not have to remove cells from tissue in order to transform the cells.

at

Labling of many pyramidal neurons from a fixed hin
; slice from a P20 mouse that was shot with a
www.bio-rad.com combination of seven different lipophilic dyes.

NATURE PROTOCOLS | VOL.1 N0O.2 | 2006 | 977 Methods 30 (2003) 79-85
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Electroporation - Nucleofection (Amaxa)

Electroporation: application of an electric filed which increase the conductivity and permeability of the cell plasma

membrane
Mucleofection is a transfection method of nucleic acids into cells so far considered difficult or even impossible to transfect.

MNucleofection, is trademark, owned by amaxa AG - Part of the Lonza Group.

High-efficiency transfection of mammalian neurons via nucleofection
Manuel Zeitelhofer, John P ‘JEEEEF, Yunli Xie, Fabian TI_.I"I:}iI'IQ, <abine Thomas, Michael

Kiebler & Ralf Dahm 1702 | VOL.2 NO.7 | 2007 | NATURE PROTOCOLS

http.//www.amaxa.com

In contrast to the comparatively low
transfection rates

obtained with Ca2+-
phosphate/DNA-based methods
(Fig. 1a),

the transfection efficiency
attainable with the nucleofector
device typically ranges between
50% and 85% (Fig. 1b)
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Electroporation in utero

1556 | VOL.1 NO.3 | 2006 | NATURE PROTOCOLS

Figure 7 | The exo utero embryo is held with forceps-type electrodes.

Figure & | DNA injection into the in utero embryo. Indigocarmine is used to
show the micropipette.

In utero Intraventricular
Injection and Electroporation
of E16 Rat Embryos

Neuroscience Vol. 103, No. 4, pp. B65+872, 2001

VN E G R E EG AT
Laura Elias

Arnold Kriegstein, M.D., Ph.D. J Vis EKFI 2007: (E} 238.
Institute for HE".}E"'IE!'&:IG"I Medicine In utErﬂ IntrﬂvEHtriGuIar Injectiﬂn End
University of California, San Francisco Electrnpuratiun of E16 Rat El‘l"'lhl'}fﬂﬁ
William Walantus, Laura Elias, and Arnold
Kriegstein
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Efficient Gene Transfer into the Embryonic Mouse

Electr OPOI' aﬁon iﬂ utero (2) Brain Using in Vivo Electroporation

Tetsuichiro Saito1 and Norio Nakatsuji, Dev. Biol. 240, 237-246 (2001)

Cnrtexl P15 ! Cortex P15
Elec. E16,5 : Elec. E13,5

A Brain E18,5
Elec. E15,5
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Use of fluorescent proteins

INn neuroscience
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GFP-Actin NG108 30x RT
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In utero Intraventricular
Injection and Electroporation
of E16 Rat Embryos

William Walantus
Laura Elias
Arnold Kriegstein, M.D., Ph.D.

Institute for Regeneration Medicine
University of California, San Francisco

J Vis Exp. 2007; (6): 236.
In Utero Intraventricular Injection and Electroporation of E16 Rat Embryos
William Walantus, Laura Elias, and Arnold Kriegstein



Fluorescent proteins - Lydia Danglot

Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system
Jean Livet1, Tamily A. Weissman1, Hyuno Kang1, Ryan W. Draft1, Ju Lu1, Robyn A. Bennis1, Joshua R. Sanes1 & Jeff W. Lichtman1

Nature, Vol 450, nov 2007
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The Brainbow
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Modes of migration of

excitatory cells
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Surface externe
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De Dale Purves, George J. Augustine, David Fitzpatrick
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Radial migration of pyramidal cells

. © Somal translocation of pyramidal cell

2} Pause in the IZ: pyramidal cell
with multipolar morphology

© Ventricule-directed migration

© Glia-guided locomotion
; of pyramidal cell

Disrupted In
Ax 1/2
utant

Danglot et al. (2006), hippocampus 16: 1032-1060.
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=72 min

Figure 3 | Somal translocation. Time-lapse images of a cell showing somal translocation in a mouse cortical slice that was labelled
with Oregon Green BAFPTA-1 488 AM. Images were acquired every minute and each frame shows a single optical section. Scale
bar, 10 um. See Supplementary Movie from REE 31 @ 2001 Macmillan Magazines Ltd.

Nadarajah & Parnavelas
E 1 6 Nat Rev Neur (2002)vol.3:423.

Terminal

Translocation Somal translocation

Total recording time:
300 min.

Nadarajah, Nature Neurosci. 4, 143—-150 (2001).
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Glia-guided locomotion

Glial-Guidance

recording time:160 min

Nadarajah, Nature Neurosci. 4, 143—150 (2001).

Nadarajah & Parnavelas
Nat Rev Neur (2002)vol.3:423.

Nature Reviews | Neuroscience
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Modes of migration of

Inhibitory cells



Migration of inhibitory interneurons

A.

Olfactory bulb

Subpallium

Diam:ephalun’
v Cerebellum

Medulla

Hypothalamus
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Prospective

Hypothalamus

Danglot et al. (2006), Hippocampus 16: 1032-1060.
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Migration of inhibitory interneurons

Cortex
striatum
hippocampus

(CA regions and dentate gyrus)
amygdala

stria terminalis

Cortex
striatum
hippocampus
(CA regions)

olfactory bulb
LGE| Cortex
nucleus accumbens

MGE

Danglot et al. (2006), Hippocampus 16: 1032-1060.



Tangential migration of interneurons
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Radial migration of pyramidal cells

Somal transfocation of pyramidal cell
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Danglot et al. (2006),
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Figure 5 : Modes of migration of interneurons from the subpallial telencephalon toward the cortical and hippocampal anlagen.
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Tangential migration of interneurons
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Evuropean Journal of Neuroscience, Vol 23, pp. 894-900, 2006 doi: 10.1111/}.1460-9568 2006.04630.x

REVIEW ARTICLE
Cell and molecular mechanisms involved in the migration
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